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Solution of Jjet flow problems in hydrodynamics with consideration of gravi-
tational force 1s of practical and theoretlcal interest, During the last
decade a number of approximate methods were created each of which is appli-~
cable, as a rule, only to & narrow class of problems, In case of large
Froude numbers 5 (the effect of gravitational force is 1nsignir1cant§ the
method which is based on expansion of desired functions in series of powers
of 1/F may turn out to be sufficlently convenient.

Thé idea of such & method is contained in the work of Voronetz f1 and 2].
In these papers the author examines the problem of flow of & heavy liquid
from an orifice in a vertical wall. The soclution is limited to terms of the
first order with respect to 1/F . The procedure for finding further approxi-
mations is not refined, In the work of Gurevich and Pykhteev [3], which 1s
based on the idea of Voronetz, the problem of flow of a heavy liguld from
under a baffle is solved to & first approximation. The work of Kostychev
(4] in which an analogous method 1s applied to the examination of somewhat
different questions should also be mentioned. In this paper the effective-
ness of the method of small parameter is demonstrated in the application to
the vortex problem in a bounded mass of & heavy liquid. Convergence of
ohtained serles is proven,

1, 8Statement of the prodlem and solution, Planar steady potential flow
of & heavy incompressible fluid from 8 vortex in the finite region of the
plane z = x + ¢y (the y-axis iz oriented vertically up) 15 examined.

The vortex is located at the point C{z =2z, ).

M At points 4 and 5 of the boundary the ordi-

4 nate y reaches extreme values: y . = 1[, and

Ymin = — l. The pressure along the ooundary is
constant, while, as will be shown below, the

gravitational force which is acting on the flu-

3 1d 1s equalized by an external concentrated
force applied to the vortex.
8 From the Bernoulli equation it follows that

the velocity V on the free surface must satis-
fy the relationships

Fig. 1 P"‘=Vo’(1—all) (o<a=%§f—<i) (1.4)

Here ¢ 18 the acceleration due to gravitational force, V, is the value
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of velocity at y =0 ,

We will be looking for an anslytical functiomn z = z{{), representing a
circle with a unit radius with the center at the origin of coordinates of
the plane ({ over the region of flow i1n the & plane. It will be required
that points ¢ = ¢ , -~ ¢ and O will transform into points 4, 3 and ¢
correspondingly.

A complex flow potential w = (I'/2mi) In{ 1s introduced; from (1.1} we
obtain that for [ = g

Re(lnw —lnz)=InVy+Y,In (§ —ay/ ] (1.2)

Primes denote derivatives with respect to ( .

The function 2({) and the magnitude of circulation T depend on ¢ as
a parameter. Assuming that in the vicinity of o = O this dependence will
be analytical we will represent the desired functions in the form of power
serles

=m0+l +lPua@+..., (GEY =20+ iy 0O (13

T
wGa)=jgrA+oent+an+ )i (t.4)
Here T, and vy, &re real constants and g,({) are functions which are
holomorphic within the circle.

Substitution of Expressions (1.3) sand (1.4} into {1.2) gives
) , '
Re [In-éi—-}-ln(i +oan oty +..) —lnz —In (1+a% +a’§i—,—+. . )}—_:

1
v, +ghft—a(T ety )] g=dy s

Expanding logarithms which enter inteo Equation (1.5) in power series and
then collecting coefflcients for equal powers of o , we obtain an infinite
series of condltions which must be satisfied by functions 2z, {¢) at the
boundary of the circle,

T ’ 1
Re(ln—z?o‘--—-ln z,’)= InV,, Re,(‘\';w?;—,— =-——2—%‘-’-—
W_w  Awy_ (n o dw
Re(""‘"’z"‘z,' ’*"2'2?")_ 7 (3 +3%) .6)
10 zs' | #'ey 1%y 47y s 1% )
Ro(rs —tm+ 5 — o+ 2 —3 &)=~z (5 +5 +3%

1 nt oz a | wn o't g
BG(""“"T——W&‘}— Tl’Ta——T“;;r Tz T 5% 208 ' 4 2%

i(ys +iy_11+yoy: y'n 134;_‘_)
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In addition to this 1t 1s necessary to requlre that

Te(yn) =0, yo(Mgn) = —yo(—Yym) =1, Yo Mal) = % (—Yyn)=0 (1.7)
7 Chm) =y an) =y (—Yem) =y ) =y (=) =0 k=1,2,...)
" {1.8)

{dots denote derivatives with respect to ¢)
From conditions (1.6) and (1.7) it follows that
2o = i, T, = 2nlV,
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Boundary conditions for the function z,(() take the form

z ’
Re (-L;_ —‘Tk) = fx (9 =

where the first part becomes known after determination of Tp 2% (§) (i=0,14,...
.., k—1). This circumstance gives the possibility to find functions =z, ({)
successively one after the other. Constants vy, together with three other
real constants whivh arise in the process of de‘:ermination of 2z, (¢) are
found from Equations (1.8), one of which is fulfilled automatically.

It is not difficult to prove that for m = 0,1,2,...

m4-1 m
— — i am+1) 25 j
Tomin =0 Zgnyg =il 3} eI, g — 13 o IER (19
J=0 =0
Coefficients in Equation (1.9) are real.
With accuracy to terms q*

g =1L —Yoia (1 + 1) —Yy0d G+ {B — Yu i (3 — 202 — 524 —
— Vg 0t (175 — 427 — 2129)] (1.10)

vy = —ilVe(1 —Yga? — W a¥) In { (1.11)

(the order of approximation is given as the subscript in parenthesis). On
the free surface we will have here

V(4)2 =V (1 —all Y + a*”bm (¢, a))

Computatlons show that the function 6“) 1s weakly dependent on o and
for 0 < a< 0.5 we have |3, 1 << 0.7. With "q¢ increasing from O to 0.5 the
contour of the free surface is slightly compressed from the sides, almost with-
out losing symmetry with respect to x-axis, the circulation decreases and
the vortex drops down. The locatlon of the vortex is determined from (1.10)

=0
for ¢ . == — Y da (1 4 ¥ a?)

It is also easy to convince oneself that for any approximation and for
any a the contour of the free surface is symmetrical with respect to the
y-axis, that the vortex 1s located on this axis and the function § ) satis-
fies the condition 8, (% + t) = 8y (— ).

(n

2, Proof of oonvergence for solutions. We will prove that the seriles
(1.3) and (1.4) constructed by us converge for ( = e'‘, absolutely and uni-
formly with respect to the variable ¢ at least for values of q with suf-
ficlently small modull. As support we will use here the work of Kantorovich
[5] -from which we borrow the following lemma.

Lemma . If for two power serles

o+ ... ta B b, BEHBE .
the coefficlents satisfy the inequalities

A B _ .
Ianl<m, lbn|<(n+1)p n=1,2,..;,B>1)

then, coefflclients o, of the power serles representing their product satisfy
the inequalities AB

¢ —_— M
where ”B is a constant only depending on g .
Consequence . Applying the statement written above in turn to

the powers of the function <t (f) = a 8" + a2+ ...+ a,k" 4 ... we obtain
for coefficients 4 of the functlon .k B =di+dhe+...+d"+...,
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the following relationship

k
|dﬂ|<;___ii_a§.ﬂlg“
(n+ 1)
The function o(¢) 1s expanded in a power series as follows

o0

@ () = ) (a,cos at + b, sin nl)

n=0
It is agreed upon to call as the norm of function ¢(¢) the sum of moduli
of coefficients in the expansion

[e o]
lo =3 (a1 r]b,1)
n=o0
It 1s easy to convince oneself that

191 () + @2 DI <191 (O + (92 @ @ 109 D <l O l9e O 19 @F =10 (D]
We propose that for 1<k n

the followlng statement is correct
3 (e¥) CR*!
1
Here

(k+ 1)F°
applies for x =1 .

3 CR*!
IT);I<"-'7'_  + i)p

in such a fashlon that the inequalities (2.1) will be fulfilled for k = n 3 2.
difflcult to prove that

can be determined
With the aid of Equations (1.9) and the condition 'y, (3r) = O 1t is not
' Yn () l

MR it R
1 2, () 2, (e7) 3 |z, (7)
] <‘2‘"Lz_“*u’ <" T 22
) z_ el 7 zn’ (¥
H..I<IR0—~—", —Tu ﬂ———“, < 5| Re
for q® are separated out.

Equation (1.5) is expanded into a power series in ¢ , and coefficients

(2.!)
¢ 1s a constamt selected in such & manner that the statement (2.1)
We will show that the constant &

1 - Tnﬂ (2'3)
We will have

n
1 d Z(*i)k (2 2 n-1 k
—_— e — i+ +...+a T,._,)} —
I {nl a2
R (a.""_’-{-a‘_zl'..l».---ka“‘l.z_"_"_l_)k} _
Z \al 2 2Tk I R 7} Jamo
1p 1 d (=) R, L, net Fng\k
_— — — —— —_ v x —_—— —
2{n| a"kza e 1)}¢=0
i ar < 1
a1t
I —Z-{n! da™ kgz k T
where

14
(m L | TR g !la—a)"
1 ] a==v
5’ = “j, (eit), z'jz — zjr (e“), v =y )
Utilizing (2.1) and (2.2) and properties of norms of periodic functions
we obtain from the last relationship



The vortex problem in & maas of heavy liquid 941

[ nl e B G T e T

38 =0

S S

n! da"' k-’&"T nB
hid -3 -k
{f CR“?* , { (1 1 atC , o’CR a™1lCR" 3] }
b el St o i iy Phaiiuiuhdl -{-_____.._
3 2t {n! dm“,za k [ TrE T T 2:(n —1)% 1 Ja=s

On the basiz of results from Lemma

A an @Ry @R
{“f do 2B 38 Foot nf ]}¢=o

-1

{ 4 [eR @R (@RHE . ME
=R"{7‘T(daﬂ)”[2p+ F ottt ]}a=0<R (n+1)P

We assume that the following inequalities are correct

c 9\8
— 2. 2.4
=1, 23(3) >1 (2.4
Then
asCR

1 d alC a*1CR"-3 1¥ } .
{'ﬂ }E"T[“"' 228 T g T T 2-(»-1)5] s

[ £ [ 2en +...J_1’110£’.‘:1]*} <Rn(£.)*_i’§_”.'.‘...
g L P 3B oA a=0 R} (at1)f

In that way

R (CMg )* + A CR™Y _
My +1)P 5 K

”’m 7 R /7T TR
3 n [ cM, CMB] i CR™?
YT M+ P —taf1— R ')-‘“R“ +T 2.5)

For the statement (2,1) to be correct at k = n > 2, taking into consider-
ation (2.3) and (2.5), it 1s sufficlient to require that the following ine-
quality be satisfiled

) [ (-3 ) 3 M,

$\2/ BT M, R TR
ton -~ F) "< TF 2.6
2

Let us assume = 2 , then from [5] we will have N,= 1.520. S8ince
=0 and 2,7/ ﬁ = 1, then to satisfy the first inequalities (2.%) and
zﬁe mequalibiesota.l} at x =1 1t is sufficient to take (¢ = & , Relation-
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ship (2.6) assumes the form

2.250 2.606 2.606
R? + 0.658 ]:-—- In (1 — T) — T—]

6.080 6.080 1.714
=4 —_— —_— _—
, 0.987[ la(1—=7 } - % ]g .
From this R > Ry = 17.0 (here the second of inequalities (2.4%) will be

satisfied). Therefore, the statement (2.1) 1s correct for any % at f =2
and R > R,. Consequently, the series

=Tl +oan+ary+...)
7 (e, 0) = 2 (") +az’ () + a2 () + ...
wi1ll converge for a < 0.058 < 1/R, (actually the 1imit of convergenece

will be wider of course). With the aid of the second inequality of (2.2) it
is easy to extend the last proof also to series (1.3).

3. PForoe aoting on the vortex., Let us examine the system of external
forces acting on a cylindrical volume of liquid bounded by a free surface
and two planes normal to this surface. The distance between the two planes
is equal to unity. The resultant of the gravitational force pP = — {pgS
(where p 1s the density of the liquid and § 1is the base area of the
liquid volume) and 1s directed along the y-axis ., We willli.show that the
force p 1s equalized by an external concentrated force acting on the vortex.

In fact, the following external force acts on the vortex

. d .2 '
p:iS(—"") dz, or F=£RV’ (dz + idy)
2 dz 2 ¢

Here in the first expression the integration is carried out along any
arbitrary closed contour which lies in the plane of motion and encompasses
the vortex. The second expression is applicable if 1 , the projection of
free surface on the xy plane, 1s taken as the contour of integration., But
on f condition (1.1) is satisfied, therefore

. . "
=2 vo\@e i —Fve Floa+ aaw
L L
Taking into consideration that
de:%dyzgydy=0, %xdy=——8ydz=s
. . i

o

we wlll have
F = ipg§ 3.1

which was to be proved. Apparently Equation (3.1) 1s also applicable to any
multipole in the bounded mass of liquid.

Assume the problem under examination to be solvaed to the nth approximation,
1.e, functions 2 and p are found with accuracy to terms of the order a®.

Then along L v
Viy? = Vo? ( 1 —a ('ll) 4 a"+18(n))

From (3.1) we obtain
Fipy = ipgSey + ipglu"% (On) Ty + 18y Yy )
Taking into consideration equalities L

6(1;) (w+ 1) = b(n) (— 2, y(n)’ x+9=— !I(n). (— 0,
it 1s easy to prove that

B(ny Wn) = 0

e
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Therefore,

Finy= 08 Simy +9"0(m)): Oy = lS B () 4% ()
L
at the same time when P( y == :pgb(n) Thus the sum P(n)-]-F(n) has the order

al

The last circumstance 1s convenlently used for checking the solution,
applying Equation _
here (, 1s the coefficlent for 2z — 2, in the expansion of the function p
in the vicinity of point .,.

4§, One approximate method. In the solution of jet flow problems of gene-
ral type by the method of expansion in powers of g the determination of
even the first approximation presents as a rule considerable difficulties
which are connected with the necessity of computing singular integrals depen-
ding on a number of parameters [3]. In the case where the solid boundary
consists of vertical rectilinear sections 1t may turn out to be more advan~
tageous to use another approximate method which permits to obtain the solu-
tion in the first approximation. The idea of this method consists of the
following.

According to Equation {1.1) on the free surface
InV=mInVe+Yyln({ —ay/)) (4.1)
Here 1 1s some characteristic dimension. Considering o to be small
and /1 bounded on the free surface we write
hhV=hVy—1Y,ay/l
1.e. we w:l.ll neglect on the right-hand side of Equation (4.1) terms of the
order ¢® and higher.
We introduce the following analytical function (4.2)
ia dw a a
F=lnl’o+~§Tz—ln—d-z- (ReF=an.— 3 y —InV,Im F = T +0)

Here ¢ 18 the angle of inclination of veicclty vector to the x-axis.
On vertical rectilinear sections of a solid boundary ImF = const , and on
the free surface ReF = O in accordance with (4.2). Knowing the singular-
ities of the function F in the canonical region of the complex variable (
and the simplicity of boundary conditions permit to construct the following

function dz iaz F
V,,dwexp—zl = e

Multiplying both parts of the last equation by gw/d¢ = r{(¢), we obtain
a differential equation for determination of =2(¢)

Ve gt eip 3= O

From this ¢
= Z it g en[— s || FOr@ att
G

The method described was used by the author for the solution of the prob-
lem of cavitating flow around a flat plate by a stream of a heavy liquid [6].
Let us now apply this method to the problem of a vortex in a finite mass of
a heavy liquid. We wilil have here

dz iz, do T 1
Ve gu o 31 = L aT = 2mi T

From this
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2] iaz r . .
Vg exp o7 =7 ¢ L+ 0+ i

Real constants I', v, ¢, and (, are determined from conditions
() =i, z(—i)=—il

In the final form

£ —i{-[ln (1 + icm%) + lnmg—], T = 4alV, —;—M%- (4.3)
Expanding (4.3) in series with respect to o we find
=1 —Yiad+8) =Yt (C+ ) —...]1, P=2nlV,(1+ Yy0t-+..) (44

Comparing the last expression with Bquations (1.10) and (1.11) we convince
ourselves that Equations l(‘ib.3) solve the problem in the first approximation.

The asuthor is thankful toc M.I. Gurevich for useful suggestions and advice,
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